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ABSTRACT 

Unitary symmetry of elementary part ic les is described in a 

simple way requiring no knowledge of group theory. The basic approach is 

that of Levinson, Lipkin and Meshkov, and uses SU^ subgroups of the group 

SU . Unitary symmetry appears as a generalization of I-spin symmetry, 

in which three "spins" are defined in a symmetrical way and are all 

required simultaneously to be conserved. One of the three spins is 

I-spin; the other two, called U spin and V spin, define cer ta in t ransfor 

mations between particles of different s t rangeness. Experimental 

consequences of the conservation of all three spins are calculated with 

conventional angular momentum algebra. The breaking of unitary 

symmetry by electromagnetic interactions and by the strong interactions 

producing mass splittings leads to consequences which are easily calculated 

with the use of the three spins and angular momentum algebra. 



UNITARY SYMMETRY FOR PEDESTRIANS 

(or, I-SPIN, U-SPIN, V-ALL SPIN FOR I-SPIN) 

H. J. Lipkin 

INTRODUCTION 

Unitary symmetry theories describe elementary part icles 

in terims of a higher symnnetry including I-spin symmetry. The essentail 

features of this higher symmetry a re manifest in Figs. i(a, b, and c). On 

diagrams of hypercharge Y versus the z-component of the I-spin, T , 
z 

points are plotted respectively for (a) all known baryons of spin-1/2, 

(b) all known pseudoscalar mesons, and (c) all known vector meson 

resonances. These plots are all seen to have a 120 rotation symmetry. 
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Fig. 1. Y vs. T plots for stable baryons and pseudoscalar and vector 
mesons. 

This was originally a seminar lecture presented at Argonne in 
August 1963. 



Noting that particles appearing along the same horizontal line (same Y, 

different T ) constitute I-spin multiplets, one can describe the symmetry 
z o 

as follows. The horizontal direction and directions along lines at ±120 

seem to be equivalent in some manner. Thus particles might be grouped 

into multiplets along lines at ±120° as well as horizontally. There would 

then be three kinds of multiplets, I-spin and two others which could be 

called U-spin and V-spin. 

Let us now investigate the consequences of extending I-spin 

symmetry to include U spin and V spin in a symmetrical way. We should 

first expect that all strongly interacting particles and resonances should 

be classified into supermultiplets or unitary multiplets like those exhibited 

in Figs. l(a, b, and c), all having the same 12 0 -rotation symmetry on a 

plot of Y versus T . Such unitary multiplets would contain several I-spin 

multiplets and exactly the same number and kind of U-spin cind V-spin 

multiplets. 

This symmetry principle leads immediately to a prediction 

as illustrated in Fig. 2, a similar plot of all the known p (3/2^) baryon-

meson resonances. The plots show-

ing the N (or 3-3 resonance), the 

Y. , and the ^ form a truncated 

triangle; one point is missing if the 

diagram is to have the characteristic 

120 -rotation symmetry. From the 

diagram one is led to predict the 

existence of the n , a state with 

spin 3/2, even parity, hypercharge 

Y = -2 (or strangeness S = -3), 

negative charge, and I spin 0. 

N * -

o 
t 

I 

y H'- I . * » \ 

h cr • . •- ^0 

I I I I I I J Fig. I. Y vs. T plot for (3/a-h) 
baryon resonances. 



Let us now attempt to describe this synnmetry in more 

detail so that we can look for further predictions in addition to the 

existence of part icles in unitary multiplets. 

In analogy to the example of I spin, we can construct a 

fornnalism in which U spin and V spin a re defined and are conserved in 

the same way as I-spin. Let us define U-spin and V-spin operators which 

satisfy commutation rules , such as those for angular momenta, in the 

same manner as the I-spin operators . This is represented diagramatically 

in Fig. 3. The I-spin operators T and T do not change Y, but are step 

operators on T , changing the 

eigenvalue by ±1. These a re 

represented by vectors c o r r e 

sponding to appropriate 

combinations of AY = 0, AT = ±1. 
z 

The U-spin and V-spin step 
operators U and V are r e p r e -

^ ± ± 
sented as vectors acting in the 

o 
directions of ±120 and c o r r e 
sponding to appropriate 
combinations of AY = ±1, 
AT = ± 1 / 2 . The U, V, and I spin 

z 

a re not all independent, since one 

can get from one part icle state to 

another by different combinations 

of these opera tors . The I-spin, U-spin, and V-spin operators thus do not 

necessar i ly commute with one another; consistent commutation relations 

must be found. One way to find them is by use of group theory. The 

algebra of the set of six step operators plus two diagonal operators Y and 
T is known to group theoris ts as the algebra of the group SU . However, 

z 3 

many experimental consequences of unitary syminetry can be obtained 

without use of SU, group theory by classifying part icles into multiplets 

Fig. 3. Vector Diagram for I spin, 
U spin and V spin Generators . 



and requiring conservation of U spin and V spin as well as I spin, i. e. , by 

dealing only with the conventional algebra of angular momenta. 

The electromagnetic properties of U spin a re of par t icular 

interest . The U-spin operators U^ and U_ change the strangeness of a 

particle, but not its electric charge. U-spin multiplets thus consist of 

particles all having the same coupling to the electromagnetic field. The 

electromagnetic interaction therefore conserves U spin rigorously and the 

photon can be considered to be a particle of U spin zero. The addition of 

strong interactions invariant under SU^ (and therefore conserving I spin and 

V spin as well as U spin) does not affect U-spin conservation in e lec t ro

magnetic interactions. Thus U spin is conserved in any combination of 

electromagnetic interactions and strong interactions invariant under SU^. 

It is interesting to tabulate the transformation proper t ies of 

various types of interactions under 1-spin and U-spin t ransformations. An 

interaction that is invariant under SU conserves both I spin and U spin and 

therefore transforms like a scalar under both I-spin and U-spin transformations. 

The electromagnetic interaction transforms like a scalar under U spin and 

conserves U spin. However, it does not conserve I spin and t ransforms 

under I spin like a linear combination of an isoscalar and an isovector . 

These results are summarized in Table I. One might imagine a different 

kind of interaction whose behavior under I-spin and U-spin transformations 

would be the converse of the electromagnetic interaction; i. e. , it would 

conserve I spin but not U spin and would transform like a linear combina

tion of a U-spin scalar and a U-spin vector. Such an interaction is 

denoted by M in Table I. We shall see below that this kind of interaction 

is of interest in the study of strongly interacting par t ic les . 



TABLE I. Transformation Proper t i e s of Several Interactions 
S = Scalar; V = Vector 

Interaction I-Spin U-Spin 

Invariant under SU S (conserved) S (conserved) 

Electromagnetic S + V S (conserved) 

M S (conserved) S + V 

Figures 4(a, b, c, and d) in the Appendix i l lustrate 

classification of part ic les in U-spin multiplets and are obtained from the 

corresponding diagrams of Fig. 1 by a 120 rotation — with one small 

difference. The points in the center of the diagrams where there are two 
0 

par t ic les such as A and S are not taken over directly. Because I spin and 

U spin do not commute, the U-spin eigenstates a re linear combinations of 

the corresponding I-spin eigenstates. The coefficients are easily obtained 
* 

with simple algebra. At all other points, at which there is only a single 

part icle at each point, there is no ambiguity and the saine part icle is a 

simultaneous eigenstate of I spin, U spin, and V spin. 

The center of the vector-meson diagram has three par t ic les , 

the p", the u , and the <(> • One l inear combination of these must have U = 1, 
0 0 

and must belong to the same multiplet as the K and K , The other two 

must have U = 0. SU algebra requires that one linear combination of the 

CO and 4> should be a U = 0, T = 0 unitary singlet which should be separated 

from the remaining eight s tates . This par t icular l inear coinbination is not 

determined by SU, algebra and has been denoted by Sakurai as 

I T = 0, U = 0) = cos X I 00 ) + sin \ I 4> ) = u *° . 

This point is discussed in the Appendix. 
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Here \ is a parameter determined from experimental data (such as mass 

splittings) to be about 38 . The corresponding orthogonal l inear combina

tion 

I T = 0, octet) = -sin \ I u ) + cos \ j <t> ) = <J> 

then belongs in an octet of vector mesons similar to the octet of baryons 

and pseudoscalar mesons. This linear combination of Q and ({> then com

bines with the p to from U-spin eigenstates in the same way as the A 

combines with the 2 . 

Note that in Figs. 4 the vertical co-ordinate turns out to 

be just the electric charge Q, analogous to the hypercharge Y in Figs. 1. 

The z component of U spin is a linear combination of Y and Q, namely 

U^ = Y - i Q . 

Component U has no particular physical significance, other than 

obviously being conserved in any process in which Y and Q are conserved. 

From the U-spin classification of par t ic les , the conse

quences of U-spin conservation are easily obtained in the same manner 

as the consequences of I-spin conservation. This is i l lustrated by the 

following examples. 
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1. PRODUCTION OF BARYON RESONANCES IN 

MESON-BARYON REACTIONS 

Consider the four react ions: 

The IT and K belong to the same U-spin doublet with U = 1/2. The proton 

is a member of a U-spin doublet with U = 1/2. There are thus two 

possible U-spin states for the left-hand side of these react ions, namely 
+ + 

U = 0 and U = 1. The K and ir are members of the same U-spin 
^f - >'fi - ^'fi -

doublet with U = 1/2. The Y , N , and H ^.re all members of a 

U-spin quartet with U = 3/2. The possible U-spin states obtained from 

coupling U = 1/2 with U = 3/2 are U = 1 and U = 2. If U-spin is conserved 

in these react ions, there is thus only one possible U-spin channel that is 

common to both sides of the react ions, namely U = 1. The amplitudes for 

these four reactions are therefore all expressed in t e rms of a single 

pa ramete r , the amplitude for the U = 1 channel. The coefficients are 

products of two Glebsch-Gordan coefficients, one for each side of a 

reaction. The coefficient for the left-hand side describes the coupling 

of two spins of 1/2 to a total spin 1; the one for the right-hand side 

descr ibes the coupling of a spin of 1/2 and a spin of 3/2 to a total spin 1. 

These amplitudes a re 
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- , + * - . / l 1 1 1 
<„ p | K Y^ ) = k 2 2 I 

. , + * - , / I 1 1 1 
(17 PITT N > = 2 I 7 2 

- 1 + * - x 

<K p K S ) 
i i i i 
2 2 " 2 2 

1 3 1 1 
1 H l l 2 2 2 

1 3 1 3 
1 I I I 2 2 - 2 I 

, , 1 3 1 1 
1 0 1 ( 2 2 1 - 2 

1 n a j = - 2 a j 

-73 
1 11 a j = — a^ 

1 0 
1 
2 ^1 

(1 .1 ) 

<K p TT Y ) i i i i 
2 2 ' 2 2 

1 3 1 1 
1011 I I - I I 1 0 

1 
^1 = 2 ^1 

* * 
2. PHOTOPRODUCTION O F N AND Y 

Cons ide r the two r e a c t i o n s : 

y + p -

V + P -

0 1/2 

y 

1/2 

*0 
N 

*0 
Y 

1 

1/2 

+ 
+ TT , 

± K \ 

1/2 

V 
or 3/2 

U: 

U , : total 

The (y, p) sy s t em is a U-sp in e i g e n s t a t e with U = 1/2 s ince the photon h a s 
*0 *0 

U = 0 and the pro ton has U = 1/2. The N and the Y a r e m e m b e r s of 

a U = 1 t r i p l e t . The IT and K a r e m e m b e r s of a U = 1/2 doub le t . If U 

spin is c o n s e r v e d in these r e a c t i o n s , t h e r e i s only one p o s s i b l e U - s p i n 

channel , name ly U = 1/2. The b r a n c h i n g r a t i o for the two r e a c t i o n s thus 

depends only on the G l e b s c h - G o r d a n coe f f i c i en t s d e s c r i b i n g the coupl ing 

of a spin 1 and a spin 1/2 to a to ta l spin 1/2. It i s 

( ^ P | N " ° „ + > (1 i 1 - i 2 Z I 

( Y P | Y * V ^ ) 
•v/2 

(1 i . o i i ) 
(2. 1) 
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MESON PHOTOPRODUCTION 

Consider the reactions 

+ 
y + P — n + tr , 

y + p ^ A + K , 

0 + 
V + p - r + K . 

U: 0 1/2 ^ 1 ^ ° _11J> 

U : 1/2 1/2 or 3/2 
total 

Here again, the left-hand side has U = 1/2 and is a pure U-spin eigenstate. 

The situation on the right-hand side of these reactions is inore complicated 
0 

because the A and S a re not U-spin eigenstates but are mixtures of U = 0 

and U = 1. These par t ic les can coimbine in two ways to make a U = 1/2 

state. Either the U = 0 or the U = 1 component of the A and S can be 

coupled to the U = 1/2 meson to obtain a total U spin of 1/2. There are 

therefore two independent complex amplitudes describing these three 

react ions. The existence of two complex amplitudes iimplies three real 

p a r a m e t e r s ; two magnitudes and one relative phase. Since there are 

only three c ross sections, one cannot relate these c ross sections by an 

equality. However, the relation between the amplitudes for the three 

reactions can be obtained and leads to inequalities relating the c ross 

sections. These relat ions a re obtained most easily by noting that the 

linear combination 

is a U-spin eigenstate and belongs to the same U = 1 triplet as the 

neutron. The amplitudes for the photoproduction of this par t icular 

l inear combination and for neutron production thus a re related by the 
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C l e b s c h - G o r d a n coefficient d e s c r i b i n g the coupl ing of a sp in 1 with a sp in 

1/2 to a total spin 1/2. The r a t i o of a m p l i t u d e s t h e r e f o r e i s 

( y p | n TT ) 

- ^ 

so that 

( 3 . 1 ) 

( Y P ( „ , + > = . : | . ( , p ( 2 V ) - ^ ^ ( V P | A K + ) . ( 3 . 2 ) 

This r e l a t i on be tween ampl i tudes i s not a r e l a t i o n between c r o s s s e c t i o n s 

b e c a u s e the r e l a t i ve phase of the Z and A p r o d u c t i o n a m p l i t u d e s i s 

unknown. However , it follows that the abso lu t e v a l u e s of the t r a n s i t i o n -

m a t r i x e l emen t s a r e r e l a t e d by the i nequa l i t i e s 

( Y p ( n . + ) | ^ i | j ( , p | 2 V ) | ± ^ | ( , p | A K + > | 

( y p j n , ^ ) I ^ | ^ | < , p , ^ 0 ^ ± j _ ^ , ( , p | ^ j , + ^ , 

( 3 . 3 a ) 

( 3 . 3 b ) 

4. ELECTROMAGNETIC DECAYS OF THE N* Y* 
AND 

*+ q u a r t e t , whi le the 
The Yj and H belong to a U = 3 /2 

Y, • and N*+ belong to a U = 1/2 double t . T h e S " , r " £ + and p a l l 

have U_= 1/Z. Thus we find that the e l e c t r o m a g n e t i c d e c a y j of the Y * ' 

and S a r e forbidden but the decays of the Y*^ and N*+ a r e a l l o w e d 

and have equal a m p l i t u d e s , i. 

I 2 £ b i d d e n : ( Y ^ ^ ' I Z 'y) ^^^ ( ^ * - , ^ • 
Y > 

Allowed: ( Y / ^ + l s + y ) * + 
(N ( p Y > . 

(4. 1) 
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*o *0 *0 
The N , H , and Y belong to the same U = 1 triplet and can 

decay electromagnetically to the corresponding members of the U = 1 
- 0 baryon tr iplet consisting of the n, the ^ , and the l inear combination 

i S ° + ^ A . Thus 

, * o , , , * 0 , 0 , , * 0 , 0 , 2 * o , 
(N |ny> = (H |H Y> = 2(Y | s " y ) = ^ (Y | Ay) . (4.2) 

5. ELECTROMAGNETIC DECAYS OF THE r\ AND TT 

Since photons have U = 0, only a U = 0 state can decay into 
0 

two photons. The T] and IT are both mixtures of U = 0 and U = 1. The 

U = 0 state is the l inear coinbination 

-J- \T^ ) - Z \r\) . 

Thus, 

(TT" |2y ) = - N/3(n|2Y) . (5. 1) 

6. MULTIPARTICLE REACTIONS; TWO-MESON PHOTOPRODUCTION 

U-spin conservation is par t icular ly useful in considering 

react ions in which several par t ic les a re produced in the final state. If 

SU algebra is used and all possible final states a re considered, there 

a re many possible couplings and many channels. Most relat ions obtained 

in this way are complicated. U spin provides a method of choosing the 

par t icular react ions having simple proper t ies ; i. e. , those reactions for 

which only one or two couplings are allowed by U-spin conservation. 

Consider for example the reactions 



U; 

y + P -

y + p -

y + p -

0 1/2 

* - + ^ + 
N + T + IT , 

* . + + 
Y + K + IT , 

3 /2 1/2 1/2 

U-spin conservation requires that the two mesons should 

couple to U = 1 in order that the combination may couple with the U = 3/2 

baryon resonances to a total U = 1/2. Thus 

( y p | N * - . \ " > / ( y p | Y * - ^ { K \ + ± u V } ) / ( v p | H * - K V > 

1 1 1 -1 
2 2 

2 2)/i2 ' 2 ° UW'-i' H) (6 .1 ) 

i/Nr2 -1/V3 i/'Jh . 

The K and TT are spinless bosons belonging to the same 
+ + 

U-spin doublet. The wave function for a two-particle K TT system must 

be totally symmetric in space and U spin. Since the U = 1 state, 
+ + + + 

(l/\/2) {K IT + TT K } is symmetric in U spin, it must alse be space-

symmetric. The angular distribution for this reaction is therefore 

symmetric under interchange of the two mesons. They must be in a 

state of even orbital angular momentum and even pari ty with respect to 

their center of mass. 

Similar relations follow for the production of the 

corresponding vector mesons. 
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7. PRODUCTION OF il AND BARYON RESONANCES IN 

PROTON-ANTIPROTON ANNIHILATION 

*- «- *-

The n , N , Y , and H are seen from Fig. 2 to be in 

the same U = 3/2 quartet . The corresponding antibaryons also form a 

U-spin quartet . Consider the reactions 

U: 

p + p -> 

P + P -

p + p -

p + p -

1/2 1/2 

U ,: 0 or 1 
total 

N + N 

*-+ Y 

* - « . 
S + H , 

Q' + il' . 

3/2 3/2 
0. 1. 2 or 3 

The proton and antiproton are both in U-spin doublets having U = 1/2. 

The reactions above therefore go through two U-spin channels (U = 0 

and U = 1) and are expressed in t e rms of two independent complex 

amplitudes. Letting a and a be the amplitudes for the U = 0 and U = 1 

channels, we can write 

(p p N N 

(PP Y Y ) 

— , * - > ! = -
(PP H H ) 

(PP " " ) = - ; ] ? 7 

1 / i 1 2_2 
^2 U 2 2 - 2 

_L(I 11 1 
^|2\Z 2 2 " 2 

,̂ 2 U 2 -2 2 

1- (l 1 11 
\/2 \2 2*2 2 

„ ^1 1 / 3 3 3 3 
° ° ' ^ 0 + ^ ( 2 2 2 - 2 

1 / 3 3 1 1 
° ° ' " 0 + ^ 2 2 2 - 2 

„ ^> , 1 / 3 3 1 1 
° ° 1 ^ 0 + : ^ ( l 2 - 2 - 2 

^ ol J. 1 / 3 3 3 3 
° ° > ^ 0 + ; / I 2 2 - 2 2 

1 0 a ̂1 ' 

1 0 a ̂ 1 ' 

1 0 a '1 ' 

1 0 a 

(7. 1) 



where the factors ±(l/«^2) come from coupling (p p) to U = 1 and U = 0. 

When the numerical values for the Clebsch-Gordan 

coefficients are inserted, these become 

•^(PP|N*- N ') = -iag +Y7I â  , 

'^2(PP|Y*- Y*-)= ^ a ^ - ^ a^ . 

(7 .2) 

' /2(pp|s"'H'-)=-iao-2i5 ^ ' 

^fZ{pp\il' n " ) = + iao + - ^ a^ . 

These four relations involve three pa ramete r s : the magnitudes of the 

amplitudes a and a and the relative phase. Eliminating these three 

parameters between the four equations gives a relation between the 

cross sections which can be written as an expression for the {il , il ) 

production cross sections expressed in terms of the other three , namely 

<T(il' il') = o-(N - N " - ) + 3 {(r(H - H*-) - a-(Y - Y*')} . (7.3) 

8. PESHKIN'S THEOREM AND GENERAL RELATIONS FOR 

il' PRODUCTION 

The relation (7. 3) between the c ross sections for production 

of n , N , Y , and H can be generalized by the use of Peshkin 's 

symmetry theorem to obtain 

<^(il')= a(N*-) + 3{<r(H*-) - <r(Y*-)} . (g. 1) 

M. Peshkin, Phys. Rev. iU_, 636(1961), Eq. (4.4). 
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This relation is valid for (pp) and (K p) react ions , for (yp) and (yn) 

photoproduction react ions , and also in (TT p), (TT p), and (K p) react ions. 

The validity of the resul t depends only upon conservation of U spin. It 

applies to total c ross sections for the production of these part icles along with 

any other par t ic les , and also to part ial c ross sections provided that the set 

of par t ia l c ross sections chosen is consistent with U-spin symmetry; i . e . , 

provided that they include all possible reactions involving members of a 

given set of U-spin multiplets. 

Equation (8. 1) is obtained directly from Peshkin 's formula 

by substituting U spin instead of I spin. The relation is directly analogous 

to the well-known resul t in angular momentum that a part icle of spin 1 can 

have no moment higher than a quadrupole moment and in part icular that 

its octupole moment must be zero. In all of the reactions considered, the 

initial states are either of U = 1/2 or mixtures of U = 0 and U = 1. There 

is never any component having U > 1. Since U spin is conserved in the 

transit ion, it follows that the expectation of any "U-spin tensor" of rank 

greater than 2 must vanish in the final state. In part icular , the expecta

tion value of the "U-spin octupole" tensor of rank 3 inust vanish. 

Equation (8. 1) expresses the fact that the part icular linear combination 

of the probabili t ies of finding a n , an N , a H , and a Y transforms 

like a th i rd-rank U-spin tensor and therefore has zero expectation value 

in the final s tate. 

The breaking of SU symmetry and the consequent mass 

splittings must be considered in the use of this formula. The various reactions 

that give r i se to the c ross sections must be corrected for mass-difference 

effects such as differences in available phase space. Of part icular impor

tance a re cases in which cer ta in channels a re closed because of m a s s -

difference effects while others in the same U-spin multiplet are open. 

The above res t r ic t ions apply only to the closing of channels 

by mass and energy effects that violate U-spin conservation. If a channel 

is closed because of conservation of s t rangeness , which is consistent with 
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U-spin conservation, the validity of the relation is unaffected. For 

example, the N*-, the H*", and the Y*- can be produced in (^ -p ) 

reactions along with two mesons, but the il' cannot because it requires 

at least three K mesons in order to conserve s t rangeness . The relation 

(8. 1) still holds for this case. Since ,T{Q') is zero, the resul t gives a 

relation between the cross sections for the three other p rocesses . 

The relation (8. 1) can thus be applied to the (TT p) 

reactions, in which the il' is not produced, in order to check the effect 

of the symmetry-breaking terms and to see whether or not these can be 

treated in a consistent fashion. The results can then be applied to 

estimate o-(f!-) in the (R-p) system, corrections for mass splittings being 

applied in analogy to those found to hold in the (TT p) system. 

9. THREE-MESON COUPLINGS 

Three-meson vertices are of interest both in the consider

ation of the decay of one meson into two other mesons and also as par ts 

of diagraims describing reactions. Relations between three-meson 

vertices involving different members of the same I-spin and U-spin 

multiplets are easily obtained by coupling I spins and U spins in the 

standard manner described above with additional simplifications 

introduced by the Bose statistics of the mesons and the requirement of 

invariance under charge conjugation. 

Let us consider the decay of a neutral vector meson into 

two charged pseudoscalar mesons. The K*°, the K*°, and the linear 

combination {f p" + iNr3(t)'°*} form a U-spin triplet with U = 1. The 

charged TT and K mesons form two U-spin doublets. We thus obtain 



21 

* 0 , 
({ip" + iV3<t,*" '} |KV):({ip ' ' + i^3<t><°'}|TT\-):(K V ^ ^ " > 

111 
2 2 2 1 0 11 11 

2 2 * 2 2 »)<HII|")-
We note that since the two pions are spinless bosons in the same I-spin 

multiplet, they can be in an antisymmetric spatial state only if they are 

ant isymmetr ic in I-spin, i. e. , only if they have T = 1. To make a 

vector meson with odd pari ty, the two pions must be in an antisymmetric 

s tate . They therefore have T = 1. A T = 0 vector meson therefore 

cannot decay into two pions. Thus 

\<f TT TT ; ( 9 . 2 ) 

This resul t can also be obtained directly from conservation of G parity. 

Discarding the te rm describing the decay of the <}> into two pions leaves 

{ K * ° | K \ - ) = ^ ( P O | T T \ - ) , (9.3a) 

( i p O . ^ ^ < ° ' ' - ^ K^K-> = -Up°\rr\') (9.3b) 

The first of these relat ions allows us to predict the ratio of the width of the 
0* 

K to the width of the p . To do this we need to introduce the neutral 
0* 

decay mode of the K which is related to the charged mode by I-spin 

coupling. This relat ion is 

Thus 

(K^°|K°.°) 
( K ^ ' ° I K \ - ) 

(i 1 
(FT 

o|i 
^WT) ^2 

( 9 . 4 a ) 

<K*°|K°,°> ••2 { p I TT TT ) (9 .4b ) 
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and 

I *0 i + - , I 2 I , * 0 I 0 0 , | 2 , . , 
l(K "IK u ) r + (K |K TT ) | _ 1 . 1 _ 1 

~ |(p°hV)|^ ^ '' ' 
(9.4c) 

To obtain the ratio of the K and p widths, the factor 3/4 must be multiplied 

by phase-space factors to include the effect of the different momenta of the 

two final states. The result is in reasonable agreement with the 

experimental value of this ratio which is about 1/2. 

Let us now consider the decay of neutral vector mesons 

into K and K . The neutral K mesons are members of the same U = 1 

multiplet and must again be in the space-antisymmetric p state. By an 

argument directly analogous to the I-spin argument employed above for 
0~0 

the two-pion system, we see that the K K system in an ant isymmetric 

p state must also be antisymmetric in U spin and must have U = 1. Thus 

only the U = 1 linear combination 

l p " + i ^ 3 4><°' 

0 o" 
IS coupled to the K K system and we obtain 

( P ° | K V ) = 1 . ( , < ° > | K V ) . ,,.3) 

This result can also be expressed in terms of the charged K mode as 

( P ° | K V ) . - ^ < , ' V K - ) . (9.6) 

where the negative sign comes from I-spin coupling of i + i to 1 on the 

left-hand side and to zero on the right. Then by substituting Eq. (9. 6) 

into Eq. (9. 3b) we can relate the <t, decay to the p decay through the 

expression 
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( + < ° ) | K V ) = - : ^ ( P ° | T T \ - ) (9.7) 

(0) 
These resul ts expressed in t e rms of the <j) are easily expressed in 

t e rms of the physical <|) and oo vector mesons by noting that only the 
(0) 

((> linear combination of the physical if and u can contribute to this 

decay. The unitary singlet has U = 0 and is not coupled to the K K 

system which has U = 1. Thus 

<<|) I K " ^ K - ) = - i Nr3 COS \ ( pO I IT \ - ) , (9.8a) 

(p" |K" ' "K- ) : (4) j K"^K- ) ; (CO I K"^K-> = 1 : - N/S cos \ : V3 sin \ . (9.8b) 

Equation (9. 8a) re la tes the width of the <(> to the width of the p . Equation 

(9. 8b) can be interpreted as giving the ratio of the production matrix 

elements for p ", <t>, and co production by a KK vertex. For example, in 

K p reactions which go via one-K exchange, the ratio is 

(K-p I P ^ A ) : (K-p |coA> : (R-p |<t)A) = 1 : -v/S sin X : -N/3 cos X . (9.9) 

10. THE MASS FORMULA 

An outstanding success of unitary symmetry theory has 

been the prediction of the splittings of the masses within an SU multiplet. 

If strong interactions were exactly invariant under SU , all members of 

the same U-spin multiplet would have the same mass . To obtain a mass 

splitting that can be predicted by theory, it is necessary to assume that 

the SU, symmetry is broken by some kind of interaction that, although 

not invariant under SU , has simple transformation proper t ies . Fur the r 

more , since I spin is known to be conserved to a very good approximation 

in strong interact ions, the symmetry-breaking part of the strong interaction 

should still conserve I-spin. 
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c 

Let us now examine the possible transformation proper t ies 

of such an interaction under U spin. It cannot be a U-spin scalar ; if it 

onserved both U spin and I spin it would not break the symmetry. The 

simplest possibility is that it should be some linear combination of a 

scalar and a vector under U spin as indicated by the interaction M in 

Table I. The mass formula is obtained by assuming that mass splittings 

are obtained by taking the expectation value of an operator which has these 
* transformation propert ies. 

The values of the mass splittings predicted by this theory 

are easily obtained by use of U spin as follows. 

3+ a. The masses of the — baryon resonances. 

Consider the U-spin quartet of negatively charged baryons: 
* . * . « - 3 , 3 1 1 

il , "E . Y, , and N . These have U = - and U = - - r , - ^ , + T ' 
' * 1 C Ti L C. C 

3 
and +— , respectively. Let us consider the expectation value of the m a s s -
splitting operator in this U-spin multiplet. The U-spin scalar part of the 
operator has the same expectation value for all states in the same U-spin 
multiplet and therefore does not give any mass splitting. The U-spin 
vector part gives a splitting which is proportional to U within the same 

z 

U-spin multiplet. Thus the mass splitting of the four members of the 

quartet is proportional to U and the mass spacings are all equal; i . e . , 

there are four equally spaced energy levels. 

This seems to be assuming that the mass splittings can be treated 
by first-order degenerate perturbation theory. This is c lear ly unjustified 
because the splittings are not small. However, the resul ts agree with 
experiment so well that the approach seems to be valid, even though it 
cannot be justified on the basis of f i rs t -order perturbation theory. Such 
situations have arisen before in physics — for example, in the nuclear 
shell model. One might expect that tl̂ e t reatment, which formally 
resembles first-order perturbation theory, actually includes many 
higher order effects as well. 
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b. The mass splitting in the baryon octet. 

Consider the neutral members of the U-spin triplet 

[ H , (S + \/3 A)/2, and n] , which are states with U =-1 and U = 1, 0, 

and +1, respectively. Here again the expectation value of the U-spin 

scalar par t of the mass-spl i t t ing operator is the same for all three 

s ta tes . Let us denote this by S. The expectation value of the U-spin 

vector par t of the nnass-splitting operator is proportional to U . If 

the proportionali ty factor is denoted by V, the expectation value is 

therefore -V, 0, and +V, respectively, for the three states. We can 

therefore write 

( H ° | M | H ° > = (S> - (V> , ( lO. la) 

( - i r ° + ^ A | M | - i z °+ 4A) = (s>. (10. lb) 

( n | M | n ) = (S> + (V) , (10. Ic) 

where M represen t s the mass-spl i t t ing operator . Since M conserves I 
0 

spin, it has no off-diagonal elements between the A and the S . Equation 

(10. lb) can therefore be rewri t ten 

4 ( S V | Z ° ) +4 (A IMIA) = (S). (lO.ld) 

Combining these equations leads to the resu l t 

( n | M | n ) + ( H ° | M | H ° > { S ° | M | S ° ) + 3 ( A | M | A ) ^ ^ Q ^ ) 
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11. STATIC ELECTROMAGNETIC PROPERTIES 

Any electromagnetic operator E is a U-spin scalar. 

Expectation values of such an operator in states of the same U-spin 

multiplet are therefore all equal. 

Consider for example the baryon octet. The proton and 

the S""" are members of the same U-spin doublet, and similarly for the 

£- and "s,'. The neutron and H are members of the same U-spin 

triplet. Therefore for any electromagnetic operator E we have 

( p | E | p ) = (Z"^|E|S"^) , (11. la) 

(S- |E |2 -> = ( H - | E | H - > . ( 1 1 . 1 b ) 

(n lEln) = ( H ° | E | H ° ) . (H- Ic) 

If E represents the magnetic-moment operator, then Eqs. (11. 1) predict 

that the magnetic moments of the proton and S are equal, and similarly 
__ 0 

for the S and H and for the neutron and the ,i . On the other hand if E 

is interpreted to be the electroimagnetic mass-splitting operator, Eqs. 

(11. 1) can be combined to obtain a relation between the mass splittings 

in the three isotopic multiplets, namely 

i - m +m - m (11.2) 
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12. MESON-BARYON RESONANCE COUPLINGS 

The coupling of an excited baryon resonance to a baryon and a 

pseudoscalar meson is of in teres t both for the consideration of the decay of 

the baryon resonance and also as par t s of diagrams describing react ions. 

Consider the coupling of the negatively-charged baryon 

resonances (N , Y , H . and il ) to a negative baryon ( S or H ) and 

a neutral nneson (K , TT , T), or K ). The negative baryon resonances form 

a U-spin quartet (U = — ). The negative baryons forim a U-spin doublet (U = — ). 

The neutral mesons form a tr iplet with U = 1 and a singlet with U = 0. 

There can be no contribution from the U = 0 state since U spins of 0 and 1/2 

cannot be coupled to a total U = 3/2. Only the part icular linear combination 
0 

of TT and T\ which has U = 1 can contribute to this coupling. We can 

therefore write the transit ion matrix elements for all of these couplings 

in t e rms of a single amplitude a with coefficients involving the coupling of a 
1 " 3 

spin— and a spin 1 to obtain a spin — . These matrix elements are 

<N 

2 

| . - K ° ) = ( i l l l 
3 3 
I I 

< V - - | H V , . i , . l . 3 J. 
1 I ^ -T a 

| S IT 

I S ' T ^ - ) 

> = I M» 0 2 
1 2 

1 1 
2 2 
T T a 

( S * - | = -K°) 

f (M» 
(i'i-'lM) 

<H | H - T T ° ) - -
2 U 

' - 2 ° 11^ 

( " - | H - K ° > = ( | 

- ( l ^ -I ° I - i j ^ =JI "• 

1 - I - I '^ 

(12. la) 

(12. lb) 

(12.1c) 

(12. Id) 

(12. le) 

(12. If) 

(12. Ig) 

(12. Ih) 
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The coupling of the negative baryon resonances to a neutral 

baryon and a negative meson can be analyzed similar ly. Again there is a 

single amplitude which we can call b, and the Clebsch-Gordan coefHcients 

involve the coupling of a spin { and a spin 1 to get a total spin of - . 

However, in this case it is the neutral baryon which has U-spin 1 and 

V,- 1, TI snin - The matrix elements for these the negative meson which U-spm ^ -

couplings are 

(N - I Ti'n) 

<Y I K n> 

I ' H) 

' -z ' H'̂  ̂ /^' 

(12.2a) 

(12.2b) 

(Y 

(Y 

| K - . » , . i ( i . . i . (i ' -I °li '\)''-Ji 

(12.2c) 

(12. 2d) 

(12.2e) 

( 1 2 . 2 £ ) 

( H - | K - A > 
•V3 

2 V 2 - 2 I^ (12.2g) 

, n - , K - H » . = i ' - l 2 2 / b = b . (12.2h) 

The amplitudes a and b are not independent but can be related by 

I-spin considerations. The simplest way to obtain this relation is from the 

il which has T = 0 and is coupled to the opposite members of two I-spin 

doublets, namely JK H ) and | K 3! ). Since the linear combination 

K H > - K H ) has T = 0, we obtain 
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(12.3) 

The same resul t is obtained from the (Y ' I S 'TT ) and {Y - | S TT ' ) 

amplitudes which go through a single I-spin channel with T = 1. 

The matrix elements for the other charge states of the 

baryon resonances are obtained from the above resul ts by simple I-spin 

coupling. 
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APPENDIX 

Determination of the Mixing Paramete r 

for the Center of the Octet Diagrams 

The A and the 2 ° , which occupy the same point on the 

diagram (fig. la), are 1-spin eigenstates but are not U-spin eigenstates . 

The particular mixtures of A and 2 ° which are U-spin eigenstates can be 

determined from standard angular-momentum algebra and the additional 

commutation requirement 

[ U ,T ] = 0 . (Al) 

The vanishing of the commutator (Al) follows from SU^ 

group theory, and can also be understood simply as follows. We wish 

the set of I-spin, U-spin, and V-spin operators to form a closed set 

analogous to angular-momentum operators; i . e . , the commutator of 

any two operators should give a linear combination of the operators of the 

set. (In group-theoretical language, this is the requirement for a "Lie 

algebra. ") The commutator of U and T cannot be expressed in this way; 

U increases T by 1/2 and T increases T by '. Thus the products 
1 z + z 

U T and T U both increase T bv 3/2 and the commutator must also 
- + + - z ' 

have this property. Since there is no operator in the set which can 

change T by 3/2, the commutator (Al) must vanish if the set of 

operators is to be a closed set (Lie algebra) like angular momenta. 
We shall now determine the part icular linear combination 

0 
of A and 2 states that belongs in the U-spin triplet (U = 1). Let us call 

this particular linear combination 

| U = 1, U^= 0) . n\/:°) + (3|A> ( A 2 ) 
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where a and p a re constants to be determined. Since the neutron is the 

member of the same U-spin triplet with U = +1, the standard lowering 
z 

operator relation analogous to angular momentum gives 

U_ |n> = 's/2 { a | 2 ° > + (3|A) } . (A3) 

Operating on Eq. (A3) with the I-spin raising operator T then gives 

T U | n ) = 2a |s ' ' " ) . (A4) 

The operation of these U-spin and I-spin operators on the neutron state is 

easily calculated in the reverse order in which the intermediate state is 

the proton state and there a re no ambiguities. Since the operators T and 

U commute, it follows that 

T U | n ) = U_T |n> = U |p ) = Is"*") . (A5) 

Then from Eqs. (A.4) and (A5), 

( A 6 ) 

Hence normalizat ion of (A3) yields 

^3 

Since the phase of p is not uniquely determined, it is fixed by convention 

to be positive. The U-spin singlet state at the center of the octet diagram 

is then determined (except for a phase factor) by requiring that it be 

orthogonal to the triplet s tate. 

The treatment for the pseudoscalar and vec tor -meson octets 

is identical . The resul ts are those exhibited in F ig . 4. 
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